Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Redermination of 9,9'-bianthracene-10,10'(9H,9'H)-dione

## Zhi-Gang Wen<sup>a</sup>\* and Jia-Ming Li<sup>b</sup>

<sup>a</sup>Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun, Guizhou 558000, People's Republic of China, and <sup>b</sup>Department of Chemistry and Biology, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China Correspondence e-mail: limmarise@163.com

Received 29 August 2008; accepted 9 September 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.106; data-to-parameter ratio = 12.3.

The crystal structure of the title compound,  $C_{28}H_{18}O_2$ , was originally determined by Ehrenberg [(1967). Acta Cryst. 22, 482-487] using intensity data obtained from Weissenberg photographs. The current determination provides a crystal and molecular structure with a significantly higher precision and presents standard uncertainties on geometric parameters which are not available from the original work. The molecule lies on a crystallographic twofold rotation axis which bisects the C–C bond [1.603 (3) Å] which joins the two anthracen-9(10H)-one units.

## **Related literature**

For general background, see: Li et al. (2002); Shi et al. (2004); Müller et al. (1996, 1998, 2001); Prinz, Burgemeister & Wiegrebe (1996); Prinz, Wiegrebe & Müller (1996). For related structures, see: Ehrenberg (1967).

0

## **Experimental**

#### Crystal data

| $C_{28}H_{18}O_2$               | V = 1883.4 (5) Å <sup>3</sup>  |
|---------------------------------|--------------------------------|
| $M_r = 386.42$                  | Z = 4                          |
| Monoclinic, $C2/c$              | Mo $K\alpha$ radiation         |
| a = 22.295 (4) Å                | $\mu = 0.09 \text{ mm}^{-1}$   |
| b = 7.7297 (12)  Å              | T = 273 (2) K                  |
| c = 13.643 (2) Å                | $0.22 \times 0.18 \times 0.13$ |
| $\beta = 126.768 \ (2)^{\circ}$ |                                |
|                                 |                                |

## Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.982, T_{\max} = 0.987$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$  $wR(F^2) = 0.105$ S = 1.031669 reflections

iation  $m^{-1}$ K  $\times$  0.15 mm

4785 measured reflections 1669 independent reflections 1172 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.025$ 

136 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$ 

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a key grant from Qiannan Normal College for Nationalities Foundation of Guizhou Province (grant No. 2007Z15) and the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 2008XJKY-10B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2689).

#### References

- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ehrenberg, M. (1967). Acta Cryst. 22, 482-487.
- Li, P. C., Wang, T. S., Lee, G. H., Liu, Y. H., Wang, Y., Chen, C. T. & Chao, I. (2002). J. Org. Chem. 67, 8002-8009.
- Müller, K., Altmann, R. & Prinz, H. (1998). Eur. J. Med. Chem. 33, 209-214.
- Müller, K., Breu, K. & Reindl, H. (2001). Eur. J. Med. Chem. 36, 179-184.
- Müller, K., Huang, H. S. & Wiegrebe, W. (1996). J. Med. Chem. 39, 3132-3128. Prinz, H., Burgemeister, T. & Wiegrebe, W. (1996). J. Org. Chem. 61, 2857-2860.
- Prinz, H., Wiegrebe, W. & Müller, K. (1996). J. Org. Chem. 61, 2853-2856.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, Z.-W., Li, Y.-Z., Li, Y., Lu, G.-Y. & Liu, S.-H. (2004). Acta Cryst. E60, o2275-o2277.

supplementary materials

Acta Cryst. (2008). E64, o1931 [doi:10.1107/S1600536808028833]

# Redermination of 9,9'-bianthracene-10,10'(9H,9'H)-dione

# Z.-G. Wen and J.-M. Li

#### Comment

Synthesis of anthracenone derivatives have attracted great interest due to their interesting biological activities (Müller *et al.*, 1996, 1998, 2001; Prinz, Burgemeister & Wiegrebe, 1996; Prinz, Wiegrebe & Müller, 1996). Herein, we present a redetermination of the crystal structure of the title compound (I) which was originally refined in the non-conventional space group setting I2/a with unit cell parameters; a = 13.68 (4), b = 7.751 (3), c = 17.92 (4),  $\beta = 91.1$  (3) (Ehrenberg, 1967). The current structure is of significantly higher precision than the orginal determination which was refined using intensity data obtained from Weissenberg photographs. The molecular structure of (I) is shown in Fig. 1. The molecule consists of two anthracen-9(10*H*)-one moieties linked together by a C—C [1.603 (3) Å] bond. A crystallographic twofold rotation axis bisects this bond.

#### Experimental

Reagents and solvents used were of commercially available quality. The title complex (I) was synthesized according to the method of Shi *et al.* (2004) and Li *et al.* (2002). CF<sub>3</sub>COOH (40 ml) was added dropwise with stirring to a solution of anthracene-9,10-dione (5.0 mmol) in 15 ml of anhydrous CH<sub>2</sub>Cl<sub>2</sub>. The mixture was then placed in an ice bath and NaBH<sub>4</sub> (0.95 g, 25 mmol) was added in portions. The resulting mixture was stirred for 24 h at room temperature. The reaction mixture was poured into 200 ml ice-water. The organic layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated *in vacuo*. The crude product was recrystallized from toluene twice to give the main product 9,9'-bianthracene-10,10'(9*H*,9'H)-dione.

#### Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and with  $U_{iso}(H) = 1.2$  times  $U_{eq}(C)$ .

#### **Figures**





# 9,9'-bianthracene-10,10'(9H,9'H)-dione

| Crystal data                    |                                                 |
|---------------------------------|-------------------------------------------------|
| $C_{28}H_{18}O_2$               | $F_{000} = 808$                                 |
| $M_r = 386.42$                  | $D_{\rm x} = 1.363 {\rm ~Mg~m^{-3}}$            |
| Monoclinic, C2/c                | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -C 2yc             | Cell parameters from 1069 reflections           |
| a = 22.295 (4) Å                | $\theta = 2.9 - 24.7^{\circ}$                   |
| b = 7.7297 (12)  Å              | $\mu = 0.09 \text{ mm}^{-1}$                    |
| c = 13.643 (2)  Å               | T = 273 (2) K                                   |
| $\beta = 126.768 \ (2)^{\circ}$ | Block, yellow                                   |
| $V = 1883.4 (5) \text{ Å}^3$    | $0.22\times0.18\times0.15~mm$                   |
| Z = 4                           |                                                 |

## Data collection

| Bruker SMART CCD<br>diffractometer                             | 1669 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 1172 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.025$                  |
| T = 273(2)  K                                                  | $\theta_{\text{max}} = 25.1^{\circ}$   |
| $\varphi$ and $\omega$ scans                                   | $\theta_{\min} = 2.3^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -20 \rightarrow 26$               |
| $T_{\min} = 0.982, \ T_{\max} = 0.987$                         | $k = -9 \rightarrow 9$                 |
| 4785 measured reflections                                      | $l = -16 \rightarrow 8$                |

# Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.040$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.106$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 0.4019P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.03                                                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 1669 reflections                                               | $\Delta \rho_{max} = 0.12 \text{ e} \text{ Å}^{-3}$                                 |
| 136 parameters                                                 | $\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

# Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | у             | Z            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|---------------|--------------|-------------------------------|
| 01  | 0.86707 (8)  | -0.25682 (16) | 0.29866 (15) | 0.0855 (5)                    |
| C1  | 0.90675 (10) | -0.1382 (2)   | 0.30813 (16) | 0.0503 (4)                    |
| C2  | 0.98793 (9)  | -0.16248 (19) | 0.37296 (14) | 0.0423 (4)                    |
| C3  | 1.02019 (10) | -0.3196 (2)   | 0.43139 (15) | 0.0546 (5)                    |
| H3  | 0.9900       | -0.4083       | 0.4254       | 0.066*                        |
| C4  | 1.09595 (11) | -0.3451 (2)   | 0.49762 (16) | 0.0616 (5)                    |
| H4  | 1.1169       | -0.4513       | 0.5346       | 0.074*                        |
| C5  | 1.14056 (10) | -0.2121 (2)   | 0.50886 (15) | 0.0572 (5)                    |
| Н5  | 1.1921       | -0.2277       | 0.5553       | 0.069*                        |
| C6  | 1.10969 (8)  | -0.0560 (2)   | 0.45207 (13) | 0.0457 (4)                    |
| H6  | 1.1408       | 0.0332        | 0.4616       | 0.055*                        |
| C7  | 1.03286 (8)  | -0.02957 (19) | 0.38070 (13) | 0.0379 (4)                    |
| C8  | 0.99831 (8)  | 0.13334 (18)  | 0.30704 (13) | 0.0370 (4)                    |
| H8  | 1.0288       | 0.2306        | 0.3599       | 0.044*                        |
| C9  | 0.91944 (8)  | 0.16565 (19)  | 0.26300 (13) | 0.0393 (4)                    |
| C10 | 0.88717 (9)  | 0.3276 (2)    | 0.21705 (15) | 0.0491 (4)                    |
| H10 | 0.9158       | 0.4170        | 0.2191       | 0.059*                        |
| C11 | 0.81329 (10) | 0.3570 (2)    | 0.16860 (16) | 0.0591 (5)                    |
| H11 | 0.7926       | 0.4660        | 0.1382       | 0.071*                        |
| C12 | 0.76987 (10) | 0.2268 (3)    | 0.16480 (16) | 0.0589 (5)                    |
| H12 | 0.7199       | 0.2471        | 0.1314       | 0.071*                        |
| C13 | 0.80076 (9)  | 0.0673 (2)    | 0.21051 (15) | 0.0535 (5)                    |
| H13 | 0.7716       | -0.0207       | 0.2086       | 0.064*                        |
| C14 | 0.87527 (8)  | 0.0352 (2)    | 0.25983 (14) | 0.0426 (4)                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| Atomic disp | lacement parameter | rs (Å <sup>2</sup> ) |             |             |             |             |
|-------------|--------------------|----------------------|-------------|-------------|-------------|-------------|
|             | $U^{11}$           | $U^{22}$             | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
| 01          | 0.0740 (10)        | 0.0554 (8)           | 0.1455 (14) | -0.0116 (7) | 0.0756 (10) | 0.0060 (8)  |
| C1          | 0.0571 (11)        | 0.0449 (10)          | 0.0648 (11) | -0.0082 (8) | 0.0450 (9)  | -0.0049 (8) |
| C2          | 0.0527 (10)        | 0.0383 (9)           | 0.0436 (9)  | -0.0017 (7) | 0.0331 (8)  | -0.0012 (7) |
| C3          | 0.0705 (13)        | 0.0430 (10)          | 0.0553 (11) | -0.0008 (9) | 0.0403 (10) | 0.0061 (8)  |

# supplementary materials

| C4  | 0.0735 (14) | 0.0512 (11) | 0.0535 (11) | 0.0147 (10) | 0.0344 (10) | 0.0138 (9)   |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| C5  | 0.0496 (11) | 0.0651 (12) | 0.0458 (10) | 0.0120 (9)  | 0.0227 (8)  | 0.0111 (9)   |
| C6  | 0.0446 (10) | 0.0512 (10) | 0.0392 (9)  | 0.0003 (8)  | 0.0240 (8)  | 0.0024 (8)   |
| C7  | 0.0447 (9)  | 0.0388 (9)  | 0.0327 (8)  | 0.0000 (7)  | 0.0245 (7)  | -0.0022 (7)  |
| C8  | 0.0394 (9)  | 0.0327 (8)  | 0.0406 (9)  | -0.0041 (6) | 0.0247 (7)  | -0.0050 (7)  |
| C9  | 0.0427 (9)  | 0.0384 (8)  | 0.0414 (9)  | -0.0003 (7) | 0.0276 (7)  | -0.0074 (7)  |
| C10 | 0.0502 (11) | 0.0421 (9)  | 0.0571 (11) | 0.0027 (8)  | 0.0333 (9)  | -0.0037 (8)  |
| C11 | 0.0568 (12) | 0.0566 (11) | 0.0606 (12) | 0.0179 (9)  | 0.0333 (9)  | 0.0026 (9)   |
| C12 | 0.0414 (10) | 0.0781 (14) | 0.0570 (11) | 0.0074 (9)  | 0.0293 (9)  | -0.0030 (10) |
| C13 | 0.0464 (10) | 0.0645 (12) | 0.0558 (11) | -0.0060 (9) | 0.0339 (9)  | -0.0081 (9)  |
| C14 | 0.0429 (9)  | 0.0472 (9)  | 0.0451 (9)  | -0.0033 (7) | 0.0303 (8)  | -0.0070 (7)  |
|     |             |             |             |             |             |              |

# Geometric parameters (Å, °)

| O1—C1     | 1.2260 (18) | C8—C9                  | 1.500 (2)   |
|-----------|-------------|------------------------|-------------|
| C1—C14    | 1.473 (2)   | C8—C8 <sup>i</sup>     | 1.603 (3)   |
| C1—C2     | 1.475 (2)   | С8—Н8                  | 0.9800      |
| C2—C3     | 1.393 (2)   | C9—C10                 | 1.392 (2)   |
| C2—C7     | 1.394 (2)   | C9—C14                 | 1.392 (2)   |
| C3—C4     | 1.372 (2)   | C10-C11                | 1.378 (2)   |
| С3—Н3     | 0.9300      | C10—H10                | 0.9300      |
| C4—C5     | 1.374 (2)   | C11—C12                | 1.376 (3)   |
| C4—H4     | 0.9300      | C11—H11                | 0.9300      |
| C5—C6     | 1.375 (2)   | C12—C13                | 1.367 (2)   |
| С5—Н5     | 0.9300      | C12—H12                | 0.9300      |
| C6—C7     | 1.388 (2)   | C13—C14                | 1.391 (2)   |
| С6—Н6     | 0.9300      | С13—Н13                | 0.9300      |
| С7—С8     | 1.504 (2)   |                        |             |
| O1—C1—C14 | 120.85 (16) | C7—C8—C8 <sup>i</sup>  | 110.23 (10) |
| O1—C1—C2  | 121.12 (16) | С9—С8—Н8               | 107.4       |
| C14—C1—C2 | 117.97 (14) | С7—С8—Н8               | 107.4       |
| C3—C2—C7  | 119.84 (16) | C8 <sup>i</sup> —C8—H8 | 107.4       |
| C3—C2—C1  | 118.80 (15) | C10-C9-C14             | 118.18 (15) |
| C7—C2—C1  | 121.31 (14) | C10—C9—C8              | 119.74 (14) |
| C4—C3—C2  | 120.84 (17) | C14—C9—C8              | 121.98 (13) |
| С4—С3—Н3  | 119.6       | C11—C10—C9             | 120.78 (16) |
| С2—С3—Н3  | 119.6       | C11—C10—H10            | 119.6       |
| C3—C4—C5  | 119.33 (17) | С9—С10—Н10             | 119.6       |
| C3—C4—H4  | 120.3       | C12-C11-C10            | 120.62 (17) |
| С5—С4—Н4  | 120.3       | C12—C11—H11            | 119.7       |
| C4—C5—C6  | 120.59 (17) | C10-C11-H11            | 119.7       |
| С4—С5—Н5  | 119.7       | C13—C12—C11            | 119.45 (17) |
| С6—С5—Н5  | 119.7       | С13—С12—Н12            | 120.3       |
| C5—C6—C7  | 121.03 (16) | C11—C12—H12            | 120.3       |
| С5—С6—Н6  | 119.5       | C12—C13—C14            | 120.73 (17) |
| С7—С6—Н6  | 119.5       | C12-C13-H13            | 119.6       |
| C6—C7—C2  | 118.28 (14) | C14—C13—H13            | 119.6       |
| C6—C7—C8  | 121.01 (14) | C13—C14—C9             | 120.23 (15) |

| C2—C7—C8                                      | 120.59 (14)  | C13—C14—C1                 | 119.33 (15)  |
|-----------------------------------------------|--------------|----------------------------|--------------|
| C9—C8—C7                                      | 114.57 (13)  | C9—C14—C1                  | 120.43 (14)  |
| C9—C8—C8 <sup>i</sup>                         | 109.65 (14)  |                            |              |
| O1—C1—C2—C3                                   | -4.6 (2)     | C7—C8—C9—C10               | 166.38 (13)  |
| C14—C1—C2—C3                                  | 172.72 (15)  | C8 <sup>i</sup> —C8—C9—C10 | -69.07 (14)  |
| O1—C1—C2—C7                                   | 178.00 (16)  | C7—C8—C9—C14               | -17.4 (2)    |
| C14—C1—C2—C7                                  | -4.7 (2)     | C8 <sup>i</sup> —C8—C9—C14 | 107.14 (13)  |
| C7—C2—C3—C4                                   | 0.6 (2)      | C14—C9—C10—C11             | -0.7 (2)     |
| C1—C2—C3—C4                                   | -176.90 (15) | C8—C9—C10—C11              | 175.66 (14)  |
| C2—C3—C4—C5                                   | 1.7 (3)      | C9-C10-C11-C12             | 0.1 (3)      |
| C3—C4—C5—C6                                   | -1.5 (3)     | C10-C11-C12-C13            | 0.5 (3)      |
| C4—C5—C6—C7                                   | -1.0 (3)     | C11—C12—C13—C14            | -0.5 (3)     |
| C5—C6—C7—C2                                   | 3.2 (2)      | C12—C13—C14—C9             | -0.1 (2)     |
| C5—C6—C7—C8                                   | -172.91 (15) | C12-C13-C14-C1             | -179.91 (16) |
| C3—C2—C7—C6                                   | -3.0 (2)     | C10—C9—C14—C13             | 0.7 (2)      |
| C1—C2—C7—C6                                   | 174.42 (14)  | C8—C9—C14—C13              | -175.56 (13) |
| C3—C2—C7—C8                                   | 173.14 (14)  | C10—C9—C14—C1              | -179.51 (14) |
| C1—C2—C7—C8                                   | -9.5 (2)     | C8—C9—C14—C1               | 4.2 (2)      |
| C6—C7—C8—C9                                   | -164.09 (13) | O1-C1-C14-C13              | 4.5 (3)      |
| C2—C7—C8—C9                                   | 19.91 (19)   | C2-C1-C14-C13              | -172.84 (14) |
| C6—C7—C8—C8 <sup>i</sup>                      | 71.68 (18)   | O1—C1—C14—C9               | -175.31 (16) |
| C2—C7—C8—C8 <sup>i</sup>                      | -104.32 (17) | C2—C1—C14—C9               | 7.4 (2)      |
| Symmetry codes: (i) $-x+2$ , $y$ , $-z+1/2$ . |              |                            |              |



